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Abstract

This paper describes a platform independent opti-
misation approach based on feedback-directed program
restructuring. We have developed two strategies that
search the optimisation space by means of profiling to
find the best possible program variant. These strategies
have no a priori knowledge of the target machine and
can be run on any platform. In this paper our approach
is evaluated on three full SPEC benchmarks, rather
than the kernels evaluated in earlier studies where the
optimisation space is relatively small. This approach
was evaluated on six different platforms, where it is
shown that we obtain on average a 20.5% reduction in
execution time compared to the native compiler with
full optimisation. By using training data instead of
reference data for the search procedure, we can reduce
compilation time and still give on average a 16.5% re-
duction in time when running on reference data. We
show that our approach is able to give similar signif-
icant reductions in execution time over a state of the
art high level restructurer based on static analysis and a
platform specific profile feedback directed compiler that
employs the same transformations as our iterative sys-
tem.

1. Introduction

The growth in the use of computing technology is
matched by a continuing demand for higher perfor-
mance in all areas of computing. This demand has
led to an exponential growth in hardware performance
and architecture evolution. However, such a rapid rate
of architectural change places enormous stress on com-
piler technology.

Traditional approaches to compiler optimisations
are based on static analysis and a hardwired compiler
strategy which can no longer be used in a computing
environment where the platform is rapidly changing.

Modern architectures have very complex internal or-
ganisations: high issue widths, out-of-order execution,
deep memory hierarchies, etc. However, compiler ma-
chine models are necessarily simplified to be tractable
and only take into account a small part of the actual
system. Such models provide very rough performance
estimates which, in practice, are too simplistic to stati-
cally select the best optimisations. What is required is
an approach which evolves and adapts to architectural
change without sacrificing performance.

This paper examines a feedback assisted approach
based on traversing an optimisation space. Early re-
sults suggest that such an approach can give signifi-
cant reductions in execution time over purely static ap-
proaches with, on average, a 20.5% improvement over
the highest optimisation levels provided by the native
compiler. Although such an approach is usually ruled
out in terms of excessive compilation time, it is pre-
cisely the approach used by expert programmers when
the application is to be executed many times. Em-
bedded systems are an extreme example of this, allow-
ing the cost of compilation to be amortised over many
shipped products.

In previously published work [13, 12], we have shown
the use of iterative compilation in optimising program
performance. Different transformations are applied,
corresponding to points in the transformation space,
and their worth evaluated by executing the program.
Several evaluations, based on a compiler search strat-
egy, are performed to a certain pre-defined maximum
number, with the compiler selecting the best one. In
[3], the optimisation space was shown to be highly non-
linear and that good optimisations could be found by
our approach [13]. Related work in the area of linear
algebraic libraries has also shown good performance
[21].

However, the main drawback of previous work is
that it has focused solely on tuning compute-intensive
kernels where the optimisation spaces being searched
are relatively trivial. Clearly, for iterative compilation
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Figure 1. Percentage reduction in execution time for varying pad sizes: Swim

to be considered a realistic optimisation approach, it
must be shown to be able to find good results on the
large spaces that arise for realistic applications with a
relatively few number of evaluations.

Although iterative approaches can find good results,
they may be inappropriate if the data size, for instance,
is different from that actually encountered at runtime.
In order to investigate this phenomenom, we applied
our approach to training data before applying the se-
lected transformation to distinct reference data. In all
cases our approach outperforms the native optimising
compiler.

Finally, we compared our approach to a state-of-the-
art profile driven optimiser that is present in the Com-
paq compiler for the Alpha processors. There are many
optimisations used in this optimiser, including all of
the high level source to source transformations that are
used by our system, plus many others. This optimiser
collects runtime data to steer its optimisation process,
like our approach. However, unlike our approach, it
uses this data, by certain fixed heuristics, in a fixed
strategy. We show that our searching techniques out-
perform this static approach significantly, even though
the static profile driven optimiser has access to addi-
tional transformations not considered by our scheme
that can dramatically improve execution time, such as
software pipelining.

The paper makes the following contributions:

• For the first, time it demonstrates that iterative
compilation outperforms static approaches on re-
alistic non-kernel benchmarks.

• It demonstrates that good optimisations can be
found with variable runtime data.

• It demonstrates significant reductions in execution
time compared to a state-of-the art native high
level restructurer that employs statically (among

others) the same transformations as our system
with few evaluations.

• It demonstrates significant reductions in execution
time over an existing platform specific feedback
directed optimiser that employs (among others)
the same optimisations as our system.

This paper is organised as follows. Section 2 de-
scribes the benchmarks and platforms investigated.
Section 3 shows comparatively how performance is af-
fected by different transformations. Section 4 describes
the overall compiler infrastructure and the iterative
compilation strategies implemented. This is followed
in Section 5 by an evaluation of this approach. Section
6 provides a brief review of related work and Section 7
provides some concluding remarks.

2. Benchmarks and Platforms

We consider the following SPEC95 FP benchmarks:
Tomcatv, Swim and Mgrid with the reference data input
sets. The following platforms are used:

Alpha 21164 500MHz. In-order. Digital UNIX
V4.0D. Compaq F77 V5.0. 8K L1 cache.

Alpha 21264 500MHz. Out-of-order. Digital UNIX
V4.0E. Compaq F77 V5.2. 64K L1 cache.

Pentium II 350 MHz. Windows 2000 Professional.
Compaq F77 V6.1 16K L1 cache.

Pentium III 600MHz. Red Hat Linux 6.1. g77
2.95.1. 16 k L1 cache.

HP-PA 9000/712 80 MHz. OS A.09.07 F77.9.0.
128K L1 cache.

Ultrasparc 300 MHz. SunOS 5.7, g77 2.95.1. 16K L1
cache.
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Figure 2. Percentage reduction in execution time for varying unroll factors: Mgrid + Tomcatv

All comparative experimental data is with respect to
the native compilers at their highest optimisation level.
We later compare our approach against the Compaq
high level restructurer which is only available on the
Pentium and the 2 Alphas. The Compaq compiler
with the optimisation level set to -O5 becomes a high
level restructurer which applies all of the transforma-
tions of our system. This compiler, moreover, applies
other loop transformations as well, including software
pipelining that is well known to boost program perfor-
mance.

Furthermore, on the Alpha platforms this compiler
allows profile driven optimisation where it uses runtime
data to drive these loop transformations. We compare
our approach against this option also.

3. Impact of Program Transformations

It is well-known that program transformations have
a variable impact on program performance and that
finding the best transformation sequence is a diffi-
cult task. In this section we wish to empirically
demonstrate not only the non-linear impact of program
transformations, but how this varies across machines,
demonstrating the challenge in developing generic com-
pilers that can adapt to different platforms.

3.1. Transformations

Here we examine the impact of 3 well known trans-
formations, array padding, loop unrolling and tiling on
selected benchmarks and platforms.

Padding Array padding is used to reduce conflict
misses in cache based architectures [17]. Figure 1 shows
the reduction in execution time due to padding with
respect to the original code on Swim across three of
the platforms. This oscillatory behaviour is not par-
ticularly surprising and is well studied [15], however, it
does highlight the difficulty for an optimising compiler
in determining whether array padding should be con-
sidered and finding the best factor, particularly when
moving from one platform to another. For instance,
on the Pentium II, array padding gives, on average, a
clear improvement, even if small changes in parameter
values give wide variation in behaviour. In the case of
the Pentium III, however, it has little impact on per-
formance while for the HP-PA it should generally be
avoided.

Loop Unrolling Loop unrolling is a well known op-
timisation used to expose more instruction level paral-
lelism (ILP) to the back end scheduler and reduce the

3
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Figure 3. Percentage reduction in execution time for varying tile sizes: A21164
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Figure 4. Strategy 1: The reduction in execution time of the best transformation found so far by
strategy 1 wrt the number of evaluations. Performed on 3 platforms

relative overhead of memory access [5]. Figure 2 show
the impact of loop unrolling on 21162, 21264 and the
Pentium II when applied to Mgrid and Tomcatv. We
have highlighted the impact on the most time consum-
ing loops: two in the case of Mgrid and five in the case
of Tomcatv. In absolute terms there is much less vari-
ability than in the case of padding, though clearly in
the case of Mgrid, unrolling loop 1 gives a much greater
reduction in execution time than loop 2. Similarly the
best unroll factor varies from platform to platform. In
the case of Tomcatv, all 5 loops benefit from unrolling
and there is generally no large absolute difference be-
tween different unroll factors. However, unrolling by a
factor of 5 on loop 3 on the A21164 gives particularly
poor performance, and an unroll factor of 13 on the
A21264 seems surprisingly beneficial to all loops.

Loop Tiling Loop tiling [15] is used to improve cache
utilisation by exploiting temporal and spatial locality.
Figure 3 show the impact of loop tiling on the three
benchmarks on the A21164. Here we again highlight

two of the main loops in Mgrid, this time we just focus
on two loops for Tomcatv and three for Swim. In the
case of Mgrid, tiling is beneficial for tile sizes greater
than 4 for loop 1 but should be avoided for loop 2.
It is beneficial for all tile sizes in the case of Swim,
with those greater than 14 giving the greatest reduction
in execution time. However, tiling always gives poor
performance on Tomcatv, due to the lack of intra-loop
locality within this program [15].

Although the impact of program transformations
has been well studied, this section has shown that
high-level transformations can have a significant im-
pact on performance even when compared to modern
high performance native compilers. It is not the inten-
tion of this paper to explain processor behaviour in the
presence of transformations, rather that, as the figures
shown in this section suggest, such behaviour will be
difficult to accurately predict. Furthermore, while it
may be possible to develop static models that capture
part of each transformation’s behaviour, it seems ex-
tremely difficult to capture the combined effect across
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Figure 5. Strategy 2: The reduction in execution time of the best transformation found so far by
strategy 2 wrt to the number of evaluations. Performed on 3 platforms

all platforms accurately. Thus, designing an optimising
strategy that works well across such platforms is highly
non-trivial. In the next section we develop two com-
piler strategies that are intended to be suitably generic.

4. Compiler Strategies

The main objective of a compiler strategy is to de-
cide which transformations to apply, guided by infor-
mation in the form of static analysis, execution time, or
heuristics which are meant to reduce the transforma-
tion space to consider. While the majority of research
in optimisation via high level restructuring has relied
on static information, here we are primarily concerned
with developing techniques that have no architectural
knowledge and are solely based on dynamic informa-
tion.

4.1. Strategy 1

This strategy uses data and loop transformations in
a cost-conscious manner. Rather than search through
a large space of all possible loop and data transfor-
mations, it targets those sections of the program that
dominate program execution and considers restricted
loop and data transformations in separate phases re-
ducing the number of combinatorial options by impos-
ing a phase order.

Initially, the program is profiled and those subrou-
tines that dominate execution time are marked. Within
each marked routine, those loop nests that dominate
execution are also marked as are the arrays referenced
within them. After this initially marking phase, we
consider data transformations on those arrays marked
as significant. As data transformations are global in

effect, they are considered first on the assumption that
local loop transformations can later compensate for
some adverse effects that can be caused locally by the
global data transformations. In this strategy, the only
data transformation considered is array padding and
this is applied to the first dimension of the marked ar-
rays inter-procedurally. If there are p padding factors
to consider and a arrays, then the number of different
padding combinations is pa. To reduce this complex-
ity, we pad each array the same amount, reducing the
complexity to p. For this new padded program, we now
consider loop transformations.

Loop tiling (with tile sizes ranging from 2 to the
range of the loop bounds) is considered for all those
loop nests marked initially as significant. Each loop
nest is considered in turn and tiled. When the best tile
size is determined, it is recorded before moving on to
the next loop nest. To avoid combinatorial explosion,
each loop is optimised in isolation, ignoring the effect
of transforming one loop on the rest of the program.
Once the tile factors for each significant loop have been
determined, they are all applied to give a new program.
Finally loop unrolling is applied in a similar manner.

The strategy retains the best version found so far at
each evaluation, so that after evaluating a fixed num-
ber of transformed programs, the best transformed pro-
gram is returned as the final selected program.

4.2. Strategy 2

This strategy again focuses on the three transforma-
tions considered before: array padding, loop tiling, and
loop unrolling. Once again, profiling is used to deter-
mine those arrays and loop nests of interest. This time,
however, rather than combine the best padding, tiling
and unroll factors, we randomly search for the best

5



PII PIII HP-PA US 21164 21264 Avg.
Tomcatv 31.4 25.3 38.6 22.6 13.5 25.4 26.1
Swim 21.7 2.31 8.35 17.73 22.6 40.0 18.8
Mgrid 18.1 1.29 17.38 15.1 32.6 15.4 16.6
Avg. 23.7 9.63 21.4 18.5 22.9 26.9 20.5

Table 1. Strategy 1: Percentage reduction in execution time

PII 21164 21264 Avg.
Tomcatv 24.6 9.9 22.0 18.8
Swim 14.5 19.0 33.0 22.6
Mgrid 14.5 30.5 14.8 19.9
Avg. 17.8 19.8 23.2 20.2

Table 2. Strategy 2: Percentage reduction in
execution time

Tomcatv Swim Mgrid
Reference 251.51 194.12 274.64

Train 42.13 2.35 32.49

Table 3. Original Execution Time in Seconds:
Pentium II

combination. One or more loops and arrays are ran-
domly selected and random tile, pad and unroll factors
applied. This avoids the coupled behaviour of trans-
formations (where the best form of one transformation
plus the best form of another gives a sub-optimal value
when combined), without having to exhaustively search
a large space.

This strategy also retains the best version found so
far at each evaluation, so that after evaluating a fixed
number of transformed programs, the best transformed
program is returned as the final selected program.

As is immediately apparent, neither of these strate-
gies contain any platform or program specific informa-
tion. The next section evaluates to what extent they
may improve performance.

5. Experimental Results

In this section we evaluate the two iterative search
strategies. This is followed by an evaluation of the
use of smaller training data as a mechanism to reduce
overall compilation time.

Finally, we evaluate our iterative approach against

an existing high level restructurer and a feedback di-
rected optimiser that employ (among others) the same
transformations as our iterative system.

5.1. Evaluating iterative search strategies

The first search strategy was allowed to run for 200
evaluations1 and Table 1 shows the reduction in execu-
tion time found across the platforms and benchmarks.
In all cases we improve on the best obtainable perfor-
mance of the native compiler and give on average a
20.5% reduction in execution time. Tomcatv is most
improved by program optimisations considered in this
paper and Swim the least, though on the 21264 a 40%
improvement is found. Comparing different platforms,
the 21264 is most improved by the program optimisa-
tions considered in this paper and the PIII the least.

In Figure 4 we show how the first search strategy
performs with respect to the number of evaluations.
The reduction in execution time of the current best
program version is shown for three of the six differ-
ent platforms across the three benchmarks. At each
evaluation a new program version is selected by the
strategy. If the new program selected is an improve-
ment on the best version so far, we see an improvement
in execution time reduction and the new program be-
comes the current best version. Otherwise the current
best version is retained and we see no change in ex-
ecution time reduction. In the case of Tomcatv, the
most significant performance gains are made within 40
evaluations. In the case of Swim, higher performance
gains are made for these three platforms, taking ap-
proximately 40 evaluations to find the majority of the
available performance gains. Finally, in the case of
Mgrid, after just 18 iterations the search strategy finds
good program optimisations across the three platforms.

Despite the complex behaviour of transformations
across platforms and their interaction with each other,
our first iterative strategy has shown that it can per-
form well across all platforms. Interestingly, the rate at

1An evaluation consists of 3 parts: (i) transform the program,
(ii) compile it with the native compiler, and (iii) execute the
program.
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PII PIII HP US A21164 A21264 Avg.
Tomcatv 32.5 25.3 38.6 22.6 11.9 19.4 25.05

Swim 21.5 0.09 3.2 14.0 23.1 38.6 16.7
Mgrid 12.1 0 0 0 31.8 5.1 8.16
Avg. 22 8.5 13.9 12.21 22.3 21 16.63

Table 4. Strategy 1: Training Data: Percentage reduction in execution time

which it finds good candidate optimisations is broadly
similar for each target machine.

Although the first strategy finds good performance
with relatively few evaluations, this may still be too
time consuming in practice. Therefore, we now evalu-
ate Strategy 2 with a maximum of 15 evaluations and
compare its performance against the native compiler,
restricting our attention to 3 of the 6 platforms. What
is immediately apparent from the results in Table 2,
is that the second strategy is able to find considerable
reductions in execution time despite the small number
of evaluations. On the Pentium, it achieves 75% of the
performance found using Strategy 1 and over 85% on
the two Alphas.

If we examine in detail how fast the strategy finds
good results as shown in Figure 5, we find that within
just 5 evaluations, significant reductions in execution
time are found. Considering the size of the optimisa-
tion search space considered, this is a significant result.

5.2. Evaluating the use of training data to determine
transformation

Although we have shown that our approach outper-
forms native compilers in every case with relatively few
evaluations, this still may be too expensive. In this
experiment we therefore use the smaller training data
(and hence shorten evaluation time) from the SPEC
benchmark suite in order to find a good optimisation
and then apply the resulting best optimisation to the
actual reference data. The execution times of reference
and training data are shown in table 3 for the Pentium
II to illustrate the difference in using training rather
than reference data. Use of the training data will also
give an insight into how iterative compilation performs
in the presence of different data sets and sizes.

As can be seen in Table 4, the first iterative strat-
egy using training data never performs worse than the
native optimiser and in the majority of case gives sig-
nificant reduction in execution time. On average there
is a 16.63% improvement which compares favourably
with the 20.5% average found using solely the refer-
ence data (Table 1). Using training data we reduce the
evaluation time and obtain over 80% of the execution

time reduction when using the actual reference data.
In the case of Mgrid, performance gain was found on
only 3 of the 6 platforms, showing that its performance
is more closely related to the actual runtime data.

If we apply the second strategy with just 15 evalu-
ations to three of the six platform, we find the results
shown in Table 5, where we have on average a 21.68%
improvement. If we compare the execution time re-
duction of Strategy 2 against Strategy 1 on each ma-
chine, we see that their performance is almost identical
when using training data. Furthermore, if we compare
the execution time reduction of Strategy 2 using train-
ing data with the performance obtained using reference
data (Table 2), the training data actually gives slightly
better results due to the random nature of the search
strategy.

5.3. Comparison against an existing Static High
Level Restructurer

The previous sections have shown that iterative
compilation can give good performance improvements
over the native compiler in relatively few iterations and
in the presence of smaller training data.

In order to further evaluate the use of iterative com-
pilation in high level restructuring, this section com-
pares our approach to an industrial high level restruc-
turer. The Compaq compiler has an option (-O5)
which enables high level restructuring and is integrated
within the entire compiler chain. This restructurer uses
an elaborate phase ordered strategy based on sophis-
ticated static analysis and considerable architectural
knowledge. Loop transformation optimisations that
are used by the Compaq compiler include loop block-
ing, loop distribution, loop fusion, loop interchange,
loop scalar replacement, and outer loop unrolling. It
moreover employs array padding and software pipelin-
ing. Hence this compiler uses the same transformations
as our iterative system, and several that are not imple-
mented by us.

We applied Strategies 1 and 2 to the three platforms
(where the Compaq compiler is available) with high
level restructuring enabled. Thus, we are applying high
level transformations which are then fed into a native

7



PII A21164 A21264 Avg.
Tomcatv 25.4 11.2 22.3 19.6

Swim 28.4 23.9 35.7 29.3
Mgrid 11.5 32.7 4.3 16.16
Avg. 21.7 22.6 20.76 21.68

Table 5. Strategy 2: Training Data: Percent-
age reduction in execution time

A21164 A21264 PII Avg.
Tomcatv 12.3 25.4 22.3 20
Swim 27.9 38.2 20.3 28.8
Mgrid 4.3 10.5 18.0 10.9
Avg. 14.8 24.7 20.2 19.6

Table 6. Strategy 1: Percentage reduction in
execution time wrt a high level restructurer
-O5

compiler which may, in turn, apply further high level
transformations. The results are given in Tables 6 and
7. Overall Strategy 1 is able to reduce execution time
by 19.6% and Strategy 2 by 14.9%. Thus a techniques
that evaluates just 15 program transformations is able
to give significant execution time reduction when com-
pared to a state of the art optimiser.

In only one case does Strategy 2 fail to make an im-
provement and in this case simply achieves the same
performance as the native high level restructurer as
we are using the native high level restructuring as our
backend compiler. This ability to make use of the best
available vendor supplied compiler technology is a use-
ful feature of our approach. However, for a strictly fair
comparison, we should compare our approach using the
native low level optimiser (-O4) as our backend com-
piler, to Compaq’s high level restructurer (-O5) which
also makes use of the native low level compiler as its
backend compiler. In such a case, strategies 1 and 2
give 9.92% and 8.6%, respectively, reduction in exe-
cution time when compared to the Compaq high level
restructurer, using the same native low level optimiser.

Thus we are able outperform an existing high level
restructurer, and furthermore can use that same re-
structurer as a backend to further improve perfor-
mance. The ability to adapt to improvements in ven-
dor supplied system software is a useful feature of our
approach.

A21164 A21264 PII Avg.
Tomcatv 8.3 23.7 14.6 15.5
Swim 20.1 31.8 11.9 21.2
Mgrid 0 8.3 16.1 8.13
Mgrid 12.23 21.26 14.16 14.9

Table 7. Strategy 2: Percentage reduction in
execution time wrt a high level restructurer
-O5

5.4. Comparison against an existing Profile-directed
Compiler

We have shown that our technique outperforms na-
tive compilers, with full optimisation enabled, and
an existing static high level restructurer. Here we
show our generic approach also outperforms an exist-
ing profile-directed compiler. The Compaq compiler on
the two Alphas has accesses to low level profile tools
that allows it to gather information during one execu-
tion in order to improve code generated for the next
run [7]. This can be done under two modes: with full
low level optimisation on (-profile -O4) and with full
low level optimisation on plus high level restructuring
(-profile -O5). Hence on the Alphas the Compaq com-
piler can drive the same loop transformations as our
system using profile data. The difference between the
Compaq compiler and our system lies in the fact that
the Compaq compiler uses predefined heuristics in a
predefined order to select transformations whereas our
system performs a search procedure. In this section we
show that searching outperforms highly tuned static
heuristics significantly.

We plotted the speedups of these two different
modes against the native compiler in Figures 6, 7,
and 8 (-profile -O4, -profile -O5). We also plotted the
speedups of all other approaches described in this pa-
per. Namely, the original native (-O4) execution time,
the native high level restructurer time (-O5). For fur-
ther comparison, we also plotted the results of both
strategies using the native compiler as the backend
compiler (-it st 1/2 -O4), and the native compiler with
high level restructuring enabled as the backend (-it st
1/2 -O5).

As can be immediately seen, the iterative ap-
proaches outperform the Alpha’s profile directed ap-
proach in all cases. Furthermore, iterative compilation
with a simple native compiler (-it st 1/2 -O4) even out-
performs the profile directed approach using high level
restructuring (-profile -O5) in most cases. In the ma-
jority of cases the A21264 benefits more from optimisa-
tion than the A21164, except in the case of mgrid where
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(-O5) optimisation dramatically improves performance
for both the profile directed and iterative approaches
on the A21164. Interestingly, the Alpha’s profile di-
rected compilation actually performs better without
the use of high level restructuring on the A21164. It is
not immediately apparent why this is the case, possibly
high level restructuring may interfere with the profiler.

Overall, Strategy 1 reduces the execution time on
average by 16.52% when compared to the profile di-
rected compiler, while Strategy 2 reduces the execution
time by 12.48%.

Once again these performance gains are made with
the Compaq high level restructurer (-O5) as our back-
end compiler. However, for a strictly fair comparison,
we should compare our approach using the native low
level optimiser (it st 1/2 -O4) as our backend com-
piler against Compaq’s profile directed approach using
a high level restructurer (-profile -O5) which also makes
use of the native low level compiler as its backend com-
piler. In such a case, strategies 1 and 2 give 9.8% and
8.5%, respectively, reduction in execution time when
compared to the Compaq’s profile directed, high level
restructurer; both using the same native low level op-
timiser.

Thus, our generic approach outperforms even highly
optimised platform specific, feedback directed ap-
proaches.

6. Related Work and Discussion

Feedback directed optimisation [19] is a basic tech-
nique used in computer architecture where hardware
resources are dedicated to tracing and predicting pro-
gram behaviour [18]. Similarly, in low-level compilers
profile guided compilation is widely used to determine
execution path, allowing improved program optimisa-
tion [9]. For an excellent survey on feedback tech-
niques, the reader is referred to [19].

Due to the problems of compile-time unknowns, sev-
eral researchers have considered using runtime infor-
mation. For example, in [11], whether or not a por-
tion of the iteration space should be tiled depends on
runtime characteristics and in [8], different synchro-
nisation algorithms are called depending on runtime
behaviour. In [21, 2] systems for generation highly op-
timised versions of BLAS routines are described which
probe the underlying hardware for platform specific pa-
rameters. In the SPIRAL project a feedback directed
searchapproach is applied to DSP algorithms that can
be expressed as tensor products Within this domain,
excellent versions of DSP algorithms can be found in a
relatively short number of executions [16].
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Wolf, Maydan and Chen [22] have described a com-
piler that also searches for the optimal optimisation
based on a fixed order of the transformations. How-
ever, they solely use a static cost model to evaluate the
different optimisations which inevitably approximates
system behaviour and does not adapt to architectural
change. A similar approach has been taken by Han,
Rivera and Tseng [10] which uses a model to search for
tile and pad sizes; again such an approach is restricted
by the use of static models. Finally, Chow and Wu
[6] apply “fractional factorial design” to decide on the
number of experiments to run for selecting a collection
of compiler switches, rather than trying to explore a
program optimisation space in a platform independent
manner.

Feedback directed high level transformations have
also recently become more popular. In [20] a framework
is described which allows remote on-line optimisation
of a program while it is running, gaining the benefits
of actual knowledge of runtime parameters without the
overhead of compilation on the critical path. Our ap-
proach is similar in spirit in that different optimisations
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are tried and the best selected, theirs on-line ours off-
line. However, the main distinction is that we have
developed generic search strategies based on investing
a systematic transformation optimisation space. Dy-
namic online optimisations found in Java just-in-time
compilers [4, 14] also make use of runtime behaviour
in determining program optimisation. However, such
approaches only consider a fixed predetermined num-
ber of optimisations. Other approaches generate code
at runtime, by exploiting runtime constants [1].

7. Conclusion

This paper has described an aggressive compiler
framework that outperforms static optimisation ap-
proaches and that allows optimisers to adapt to new
platforms by way of feedback directed iterative com-
pilation. By decoupling strategy from implementation,
we have implemented two architecture blind generic op-
timisation approaches. These rely on our framing the
problem of optimisation as that of traversing a transfor-
mation space in order to minimise the object function
of execution time. We have shown that for three SPEC
FP benchmarks, across six platforms, we reduce the
execution time by 20.5% on average. When restrict-
ing the number of evaluations to just 15, we achieve
a reduction of 20.2% across 3 of the platforms. We
have also shown that good performance can be achieve
when smaller training data is used giving over 80% of
the performance achieved using reference data.

For a fair comparison, we compared our approach
to that of a native high level restructurer. Using the
same native backend compiler we obtain a reduction
in execution time of almost 10% on average. More-
over, if we compare our approach to a platform specific
profile directed high level optimiser that employs the
same transformations as our system plus several more,
we also obtain a reduction in execution time of almost
10% on average. Furthermore, we are able to adapt and
use the high level restructurer as our backend compiler,
where we are able to further improve performance, re-
ducing execution time by 12% on average when com-
pared to the platform specific profile directed high level
optimiser.

We have shown, for the first time, that iterative com-
pilation is viable for large optimisation spaces found
in general programs and that good performance may
be achieved regardless of platform. Future work will
investigate both the use of models to further reduce
the number of evaluations required and evaluate other
search strategies.
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